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Purpose  of  this  paper  is to  describe  characteristic  features  of  dissolution  data  by  using  homogeneous
model  of  dissolution  with  initial  transient  phase.  To  achieve  the  goal  we  consider  a random  lag  time  before
the homogeneous  phase  of  the  dissolution  begins.  The  resulting  dissolution  profiles  are  characterized  by
sigmoidal  shape  commonly  observed  in  empirical  dissolution  data.  Furthermore,  probability  distribution
vailable online 14 June 2011
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issolution
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andom lag time
issolution variability

of repeated  measurements  at fixed  time  is deduced  from  the  model  and  function  describing  variability
of the data  in dependency  on time  is  proposed.  Three  examples  with  normal,  exponential  and  gamma
probability  distribution  of the  lag  time  are  presented.  All  the  models  are  pairwise  compared  with  the
Weibull  function  with  high  similarity  between  them.  The  result  offers  an  alternative  interpretation  for
the  frequently  found  fit  of the  Weibull  model  to  experimental  data.

© 2011 Elsevier B.V. All rights reserved.
. Introduction

Disadvantage of all the classical models of dissolution is assump-
ion of identical initial conditions for each experiment, to be more
pecific, the initial time instant is always set to zero (see e.g. Costa
nd Lobo, 2001; Dokoumetzidis and Macheras, 2006; Macheras
nd Iliadis, 2006; Polli et al., 1997). However, it usually requires
ome time until a thin diffusion layer is formed around the solid
urface of the drug and through which the molecules of the sol-
ent diffuse to the bulk aqueous phase (see e.g. Dokoumetzidis and
acheras, 2006; Noyes and Whitney, 1897; Macheras and Iliadis,

006). Such a phenomenon is taken into account by Kervinen and
liruusi (1993),  where the authors assume a lag time during which
ossible coating of the tablet or some surface potential prevents
he beginning of wetting and also dissolution thus the probabil-
ty of any molecule to become dissolved is zero. After the lag time,
hanges on the surface of the tablet appear until the transition layer
s formed. In this stage, probability of the particles to enter the

olute grows until the system is in such a state that all remaining
rug molecules have the same probability to become dissolved and
he dissolution follows the first order kinetics.

∗ Corresponding author at: Department of Mathematics and Statistics, Faculty of
cience, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic.
el.: +420 549 49 5331.

E-mail addresses: cupera@ics.muni.cz, xcupera@mail.muni.cz (J. Cupera),
ansky@biomed.cas.cz (P. Lansky).

378-5173/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.ijpharm.2011.05.081
In this study we  employ a different approach, compared to
Kervinen and Yliruusi (1993),  for describing the same phenomenon.
It is based on consideration of a random lag time after which the dif-
fusion layer is formed and the process of dissolution itself begins. In
contrast to above mentioned paper (Kervinen and Yliruusi, 1993),
we assume that the homogeneous phase appears directly after
the lag time without any progressive phase. Even this simplified
assumption of initial transient phase has significant impact on
the model behavior. The obtained dissolution profiles have sig-
moidal shape similarly to those presented by Kervinen and Yliruusi
(1993) and in addition, taking into account measurement errors, the
model can explain typical shapes of variability observed in dissolu-
tion data (see Elkoshi, 1997). Finally, the approach offers a simple
physical explanation or at least approximation for commonly used
Weibull model.

2. Methods

Standard description of dissolution process is by fraction of drug
dissolved up to time t, F(t) = A(t)/D, where A(t) denotes the amount
of drug dissolved up to time t and D is the initial dose. Function F(t),
called dissolution profile, is monotonously increasing from zero to

an asymptote lower or equal to one and thus, after a proper scaling
if the asymptote is lower than one, it can be seen as a cumula-
tive distribution function of a random variable T representing the
time until a randomly selected molecule enters solution. Example

dx.doi.org/10.1016/j.ijpharm.2011.05.081
http://www.sciencedirect.com/science/journal/03785173
http://www.elsevier.com/locate/ijpharm
mailto:cupera@ics.muni.cz
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ig. 1. Experimental dissolution data taken from Elkoshi (1997).  (A) Dissolution pro
min] (best fit), with mean experimental data (triangle) and indicated standard devi
(t)  given in (15). The parameters �, t0 and �t0 are the same as in (A) and parameter

f dissolution profile can be seen Fig. 1A. Statistical moments of the
andom variable T can be derived from F(t),

Tn = n

∫ ∞

0

tn−1 (1 − F(t)) dt, (1)

ee Weiss (1991),  namely we obtain mean dissolution time,
DT  = ET and variance, VarT = ET2 − (ET)2. The dimensionless stan-

ard deviation,

V(T) =
√

VarT
MDT

, (2)

s also called coefficient of variation (CV).
Many dissolution profiles have been proposed to describe

he dissolution patterns, for reviews see Costa and Lobo (2001),
okoumetzidis and Macheras (2006),  Lansky and Weiss (2003),  and
acheras and Iliadis (2006).  To compare the models with the data,

wo measures are commonly employed (see Moore and Flanner,
996): the difference factor f1 and the similarity factor f2. The dif-
erence factor, f1, measures the percent error between the two
urves and is proportional to the average difference between the
wo profiles,

1 = 100

∑N
i=1|R(ti) − T(ti)|∑N

i=1R(ti)
,  (3)

here N is number of samples, R(ti) and T(ti) are the dissolved per-
ent of the reference and test product respectively at the time ti. The
ercent error is zero when both test and reference product coincide
nd increase proportionally with the dissimilarity between the two
issolution profiles.

The similarity factor, f2, is inversely proportional to the aver-
ge squared difference between the two profiles, with emphasis
n the larger difference among all the time-points and measuring
he closeness between the two profiles,

2 = 50 log

⎛
⎝ 100√

1 + (1/N)
∑N

i=1(R(ti) − T(ti))
2

⎞
⎠ , (4)
here R(ti) and T(ti) are defined as above, N is number of samples.
he similarity factor takes values between 0 and 100, where the
alue 100 is reached when the dissolution profiles coincide and
ends to zero as the dissimilarity increases.
iven by Gaussian lag time model (16), 1/�  = 14.93 [min], t0 = 23.61 [min], �t0 = 5.35
 CV(T) = 0.41. (B) Experimental standard deviation (triangle) and standard deviation
.035, standard deviation tends to �D for large t.

2.1. Homogeneous model of dissolution

The basic model of dissolution, presented by Noyes and Whitney
(1897), and called homogeneous or the first-order model, is
described by exponential distribution function of the random vari-
able T,

FH(t) = 1 − exp (−�t) , t ≥ 0, (5)

where � > 0 is a rate constant and index H stands for homogeneous.
For the mean dissolution time and variance holds

MDT  = 1
�
, VarT = 1

�2
. (6)

For sake of clarity, Eq. (6) is valid if the amount of drug needed
to saturate the dissolution medium is equal (preferably higher) to
the dose utilized. In all other cases, MDT  depends on the solubil-
ity dose ratio (see Rinaki et al., 2003). Model (5) is characterized
by the CV equal to one. Note that Eq. (5) was derived from an
experiment which configuration ensured the homogeneous con-
ditions, see Noyes and Whitney (1897).  The authors also attributed
the mechanism of dissolution to a thin transition (diffusion) layer
which is formed around the solid surface and through which the
molecules diffuse into the solute.

2.2. Random lag time model of dissolution

The homogeneous model of dissolution has the initial time
instant always set to zero. In order to bring the model closer to real-
ity we take into account a random delay until the diffusion layer is
created. Let us assume that the time T when a randomly selected
molecule enters solution is given by equation

T = T0 + TH, (7)

where T0 describes lag time until the transition layer on the sur-
face of the tablet is created and TH is the dissolution time starting
from the moment when the conditions for the homogeneous disso-
lution are established. Random variables T0 and TH are assumed to
be independent and thus we can easily derive statistical properties

of T,

MDT  = ET0 + 1
�
, VarT = VarT0 + 1

�2
, (8)



urnal of Pharmaceutics 416 (2011) 35– 42 37

a

C

O
c
t
p
s

C

I
n
C
e
i

t
t
p
T
P
c
(

f

f

F

a
t
v
a
F
s
F
t
t

2

s
t
t
c
e
t
E
i
(
w
a
i
t
n
v
t
o
b

i

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Time (minutes)

X
λ
(t

)

Fig. 2. Four realizations of random variable X�(t) given by (13) in dependency on
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nd by substituting (8) into definition (2) we obtain

V(T) =
√

1 + �2VarT0

1 + �ET0
. (9)

ne can see, that assuming the existence of the random lag time
hanges stochastic properties of homogeneous model (5).  Formally,
he CV can take an arbitrary value in dependency on the statistical
roperties of random variable T0. However, inequality CV(T) > 1 is
atisfied if and only if

V(T0) >

√
1 + 2

�ET0
, (10)

f we assume that the dissolution itself is much shorter than time
eeded for creating the conditions for it, i.e.1/� = ETH � ET0, then
V(T) > 1 is equivalent to CV(T0) > 1. On the other hand, it can be
asily verified that inequality CV(T0) < 1 implies inequalityCV(T) < 1
ndependently of other statistical properties of T0.

Eqs. (8) and (9) describe only the moments of the dissolution
ime. To obtain the complete dissolution profile we have to consider
he dissolution profile of the homogeneous part and probabilistic
roperties of the random lag time. Let us assume, that the lag time
0 is characterized by its cumulative distribution function � (t) =
rob (T0 ≤ t) defined for t ≥ 0. Then, probability density of T can be
alculated as a convolution of exponential density (as follows from
5)) and  (t) which is the density corresponding to � (t),

 (t) =
∫ t

0

� exp(−�(t − u)) (u)du, (11)

rom which the dissolution profile follows,

(t) = � (t) −
∫ t

0

exp(−�(t − u)) (u)du, (12)

s can be verified by taking the derivative of (12) with respect to
. Function F(t) is the cumulative distribution function of random
ariable (7) thus it is monotonically increasing and approaching
symptote equal to one. Furthermore, it can be seen from (11) that
′(0) = f(0) = 0 and thus the dissolution profile (12) has always the
igmoidal shape. This will be illustrated on several examples (see
igs. 3A, 4A and 5A). It will be also shown that for certain distribu-
ions of T0 function (12)an approximate Weibull function and thus
o serve as a simple reasoning behind its application.

.3. Statistical properties of repeated measurements

Model introduced in the previous subsection permits to find
tatistical properties of repeatedly measured dissolution data. A
ypical feature of any deterministic model is that for identical ini-
ial conditions and the same values of parameters, its sample paths
oincide. On the contrary, the experimental data show variability at
ach time instant of the observation whatever effort is made to keep
he conditions stable. This variability was theoretically studied by
lkoshi (1997),  where the author investigated functions describ-
ng the variability in time which originated from Weibull model
see Section 3.4). In our recent paper Cupera and Lansky (2010),
e divided the sources of variability into two  types – the vari-

bility due the measurement errors and the temporal variability
n the dissolution vessel environment. The complete variability of
he dissolution data is then taken as a sum of these two compo-
ents. In the next we show that there may  exist another source of
ariability obtained by assuming random initial transient phase in
he drug dissolution. Furthermore, it may  explain the ‘nose’ shape

f standard deviation of the measured dissolved fraction that can
e observed in experimental data, see Fig. 1B.

Random variable T given by (7) follows the first order kinet-
cs described by random variable TH after the lag time T0 elapses.
time t and � = 1/25 (dashed). Sample means (triangle) and standard deviations are
indicated.

Hence for given realization of T0, the random variable T is described
by homogeneous dissolution profile (5) with origin shifted to a real-
ization of T0. Thus model (7) can be equivalently described by the
amount of dissolved fraction at the time instant t,

X�(t) = 1 − exp (−�(t − T0)) , t ≥ T0, (13)

which is a family of random variables depending on time t and
parameter �, see Fig. 2, and

�(x; t, �) = Prob (X�(t) ≤ x) = Prob
(
T0 >

ln(1 − x)
�

+  t
)

= 1 − �
(

1
�

ln(1 − x) + t
) (14)

defined for x ∈ [0, 1] is corresponding cumulative distribution
function. This function is monotonically increasing from �(0;t,
�) = 1 − � (t) to �(1;t,  �) = 1. It allows us to calculate statistical
moments of random variables X�(t), namely mean EX�(t) and vari-
ability VarX�(t), for details see Appendix A. As expected, we obtain
EX�(t) = F(t), where F(t) is dissolution profile (12) derived in previ-
ous subsection for model (7).

The possibility to obtain variability directly from model and
without any additional parameters is unique among other models
of dissolution. However, as mentioned, another source of variabil-
ity affecting the experimental data is due to measuring instruments
always showing errors that are commonly supposed to be propor-
tional to the actual values. As shown in Cupera and Lansky (2010),
the function describing variability in data caused by measurement
errors is proportional to the square of the dissolution profile. There
is no reason to expect that the measurement error depends on the
random lag time, thus we  obtain a complete function s2(t) describ-
ing variability of dissolved fraction as a sum of the two variabilities,

s2(t) = VarX�(t) + �2
DF

2(t), (15)

where �D determines level of measurement errors and F(t) is given
by (12). It can be seen in Figs. 3B, 4B and 5B have the ‘nose’ shape

as shown in Fig. 1B and thus the derived function can explain the
typical shape of variability observed in dissolution data (see e.g.
Elkoshi, 1997).
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Fig. 3. Properties of dissolution model with Gaussian distribution of the lag time. (A) Dissolution profile F(t) given by (16), the parameters are t0 = 15, �t0 = 2 (solid),
resp.  t0 = 30,  �t0 = 4 (dashed), resp. t0 = 55, �t0 = 5 (dash-dotted). Rate constant of dissolution in homogeneous phase is � = 1/25, (B) corresponding standard deviation of
measured data (15) with measurement errors taken into account, parameter �D = 0.04 and the rest of the parameters is taken as in (A).
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Fig. 4. Properties of dissolution model with exponential distribution of the lag time. (A) Dissolution profile F(t) given by (18), the parameters are t0 = 4 (solid), resp. t0 = 16
(dashed), resp. t0 = 32 (dash-dotted). Rate constant of dissolution in homogeneous phase is � = 1/25, (B) corresponding standard deviation of measured data (15) with
measurement errors taken into account, parameter �D = 0.04 and the rest of the parameters is taken as in (A).
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measured data (15) with measurement errors taken into account, parameter �D = 0.04 and the rest of the parameters is taken as in (A).
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. Results

Three types of random lag time are proposed and investigated
n this section. Finally, the model is related to Weibull dissolution
unction.

.1. Gaussian lag time

Based on the law of large numbers we can expect that the ini-
ial time T0 is normally distributed with mean t0 and variance �2

t0
,

0∼N(t0, �2
t0

). Due to the properties of Gaussian distribution we
ave to assume that t0 > 0 and �t0 � t0 in order to eliminate nega-
ive realizations of random variable T0. Dissolution profile (12) can
e calculated,

(t) = ˚

(
t − t0
�t0

)
− ˚

(
t − t0
�t0

− ��t0

)

exp

(
−�(t − t0) +

�2�2
t0

2

)
, (16)

here ˚(.) is cumulative distribution function of standard normal
Gaussian) distribution, for an example see Fig. 3A. In the figure
an be also seen standard deviation s(t) (square root of variability)
iven by (15).

The CV of model (16) can be formally greater than one for some
ombination of parameters t0 and �t0 . However, inserting ET0 = t0
nd VarT0 = �2

t0
into (9) and imposing CV(T) < 1 gives

t0 <

√
t20 + 2t0

�
.  (17)

ur assumptions imply �t0 � t < (t20 + 2t0/�)
1/2

and thus the CV
s always lower than one for model of dissolution given by (16).

The Gaussian lag time model was used to fit the data in Fig. 1.
unction (16) fits the dissolution data well, the difference factor

1 = 1.25 and similarity factor f2 = 92.49. The standard deviation also
uccessfully describes the data, however, the model predicts higher
tandard deviation at the maximum than observed which may  be
aused by inappropriate choice of probability distribution of the
ag time or by assumption of homogeneous conditions during the
xperiment.

.2. Exponential lag time

Assuming that the changes on the surface follow the homoge-
eous model implies T0 following model (5) with � = 1/t0 in order
o ensure ET0 = t0. Dissolution profile (12) has form

(t) = 1 − t0
1 − �t0

(
1
t0

exp(−�t) − � exp
(

− t

t0

))
(18)

or t ≥ 0. This model was already derived using entirely different
pproach as a special case of heterogenous model of dissolution
see Lansky and Weiss, 2001). It is also known as a bi-exponential

odel utilized, for example, in Alway et al. (1996) and Allahham
nd Stewart (2007).  Model (18) is not suitable to fit the dissolu-
ion data shown in Fig. 1, the difference is f1 = 8.59 and similarity
2 = 53.77. However, the model was successfully used to fit experi-

ental dissolved fractions in above mentioned papers. The function
18) is depicted in Fig. 4A. In the figure can be also seen standard
eviation s(t) (square root of variability) given by (15). It can be
asily verified that the CV of model (18) is always lower than one.
.3. Gamma  lag time

The previous two examples were based on simple assumptions
or the lag time. Their main advantage was that they resulted
of Pharmaceutics 416 (2011) 35– 42 39

in the analytical expressions for the quantities of interest. More
realistic situation is obtained by assuming gamma  distribution
of T0,

 (t) = aat0

� (at0)
tat0−1 exp (−at) , t ≥ 0, (19)

where ET0 = t0, a > 0 is constant and � (.) denotes the gamma func-
tion. For special values of parameters a and t0 both previous cases
are practically included. Unfortunately, the dissolution profile (12)
and variability (24) can be obtained only numerically in the model.
In Fig. 5A are shown different shapes of dissolution profile (12)
together with corresponding standard deviations s(t) related to
variance (15) shown in Fig. 5B. It can be seen that, similarly to
the previous examples, the dissolution profile shows the sigmoidal
shape and the standard deviation has the ‘nose’. The CV is greater
than one if and only if at0 < 1 and

�
(

1
a

− t0

)
> 2. (20)

Model of dissolution with gamma  lag time can be used to fit the data
shown in Fig. 1 equally well as the Gaussian lag time model does;
the difference factor is f1 = 1.33 and the similarity factor is f2 = 91.97.
The estimated curves are not visually distinguishable from those
obtained for the Gaussian model shown in Fig. 1.

3.4. Approximation of the Weibull model

The standard descriptors of dissolution data are, for example,
the cubic root law, the square root time equation and some modifi-
cations of the simple exponential function (see e.g. Costa and Lobo,
2001; Dokoumetzidis and Macheras, 2006; Macheras and Iliadis,
2006), however, these models do not describe sigmoidal shape
of dissolution patterns. Simultaneously, one of the most success-
ful model in fitting experimental data having sigmoidal shape is,
similarly to our model, the Weibull model,

FW (t) = 1 − exp
(
rth

)
, t ≥ 0, (21)

where r > 0, h > 0 are constants. Parameter r determines scale of the
profile whereas parameter h influences the shape. As the Weibull
model is only descriptive and has not been deduced from any funda-
mental physical law, it has been the subject of some criticism. (Costa
and Lobo, 2001), summarized these arguments such as lack of any
kinetic background, or that the model has not any single parameter
related to the intrinsic dissolution rate of the solvent. Papadopoulou
et al. (2006) provided experimental evidence for the successful use
of the Weibull function in drug release studies. Result of their study
links values of parameter h and the diffusion mechanism of the
release. Authors succeeded in the case h ≤ 1, but for parameter h
having value greater than one, which implies the sigmoidal shape
of function (21), the dissolution is generally assigned to ‘complex
release mechanism’. In the next we show that for all values h ≥ 1 the
Weibull function (21) can be sufficiently well approximated by the
model with the initial transient phase. For h < 1 the Weibull model
has not sigmoidal shape and is not suitable for approximation by
lag time model.

To quantify the approximation we use the integrated square
error (ISE),

ISE (F, FW ) =
∫ ∞

0

(FW (t) − F(t))2dt, (22)

where FW(t) is Weibull model (21) and F(t) is dissolution profile of
the model with initial transient phase. For the Weibull model with

parameters r and h fixed we minimize function (22) with respect
to the parameters of Gaussian (16) and gamma lag time model in
order to obtain the best approximation of the Weibull function (21).
As the integral (22) can not be obtained analytically, we  employ
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f  the similarity factor f2 given by (4) where R(t) and T(t) are taken as in (B).

umeric approach with time step �t  = 0.01 and t between 0 and
he time when more than 99% of the drug is dissolved in both

eibull and lag time model. The minimal ISE’s (22) for the lag time
odels and Weibull model with parameter r fixed, r = 1, and dif-

erent values of parameter h ∈ [1, 4] with step �h  = 0.01 are shown
n

Fig. 6A. It can be seen that for 1 ≤ h ≤ 1.33 the results are rela-
ively similar, however, the Gaussian model (16) has slightly lower
SE than the gamma  one. For h between 1.33 and 1.8 the lowest
rror has the gamma lag time model and for h > 1.8 the best results
re again obtained for the Gaussian lag time model (16). The ISE is
lways lower than 6 × 10−4 for both models. The exponential lag
ime model (18) is not shown here because its dissolution pro-
le with minimal ISE coincide with gamma  lag time model for

 < 1.48 and thus the ISE is also the same. It means that the expo-

ential model is more suitable in this case as it has simple analytical

orm in contrast to gamma  lag time model. On the contrary, for h
reater than 1.48 the minimal ISE of model (18) rapidly increase
ith increasing h and thus the exponential lag time model (18) is
not suitable for approximation by Weibull model with such shape
parameter.

To show similarity, resp. difference between dissolution pro-
files of Gaussian and gamma  lag time models having minimal ISE
and corresponding Weibull function we  employ the approaches
summarized in Section 2. We  take equidistant time points ti
with time step �t  = 0.01 from zero to the time when more
than 99% is dissolved in both Weibull and lag time models. We
insert R(ti) = 100FW(ti) as the reference product and T(ti) = 100F(ti)
as the test product into Eqs. (3) and (4). The function F(ti) is
given by Gaussian lag time model (16) and numerically cal-
culated gamma  lag time model presented in Section 3.3, both
having minimal ISE (22) with respect to Weibull model (21)
with fixed parameters. The results for r = 1 and different val-
ues of parameter h ∈ [1, 4] with step �h  = 0.01, are shown in

Fig. 6B and C. It can be seen, that the shapes of f1 and f2 in
dependency on h follows the shape of ISE, thus the highest sim-
ilarity, resp. lowest difference is obtained for the models with
lowest ISE as discussed above. The similarity is always greater
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han 94%, resp. difference is lower than 0.5% thus the lag time
odels of dissolution can approximate the Weibull function
ell.

. Discussion

We  presented a new model of dissolution based on the homoge-
eous one but in addition extended for the initial transient phase.
his extension is realistic and can explain the sigmoidal shape of
issolution patterns. Furthermore, for Gaussian and gamma  dis-
ribution of the lag time the proposed model can successfully
pproximate the Weibull function and thus to serve as a reason-
ng behind its widespread application. Our approach also divides
he resulting statistical properties (MDT, variability) of the dis-
olution time into the properties of the lag time and that of
he dissolution time itself. It means, for example, the MDT  of
he dissolution process is different from that commonly calcu-
ated directly from the data where the lag time is not taken into
ccount.

The main advantage of the proposed model is that it offers a
unction of variability, resp. standard deviation of the repeated

easurements, which has the commonly observed shape. Fur-
hermore, for the complete estimation of the standard deviation
nly the parameters obtained by fitting the dissolution profile to
he data are needed. This is in contrast to other proposed func-
ions (Cupera and Lansky, 2010; Elkoshi, 1997) which depend
n additional parameters. Only free parameter of the proposed
unction is describing the level of measurement errors and it can
e easily estimated from data measured at the moment when
ntire amount of the drug is dissolved or the solute becomes satu-
ated.

In the data on which we illustrate the proposed model, it pre-
icts higher standard deviation at the maximum than is its actual
alue (Fig. 1B). If this feature is a typical drawback of the model
r just a singular case cannot be deduced from the single exam-
le. It also may  be caused by inappropriate choice of probability
istribution of the lag time, resp., by assumption of homogeneous
onditions during the dissolution itself. More serious disadvantage
f the model is that its analytical form (the dissolution profile and
he variability of the repeated measurements) is of rather compli-
ated form and the fit to the experimental data can be tedious. The
nalytical solution may  even be unavailable for a number of proba-
ility distributions of the lag time, similarly to the gamma lag time
odel presented in Section 3.3. The only way how to overcome

he problem is implementation of the model into an appropri-
te computer software and application of sophisticated numerical
ethods.
In our model (8) the homogeneous phase appears directly after

he lag time, but also during the creation of transitional layer on
he surface, the drug particles diffuse from the tablet to the bulk
queous phase. Including this into the model would make it more
ealistic, on one side, but less tractable on the other. We have to
eep in mind that any applicable model should be a compromise
etween going to the reality as close as possible and tractability.
imilarly, the assumption of the homogeneous conditions may  not
e relevant and taking, for example, Hixson-Crowell (see Macheras
nd Iliadis, 2006) or a reaction limited model of dissolution (see
.g. Dokoumetzidis et al., 2008; Lansky and Weiss, 1999) instead of
he homogeneous one can evoke entirely new class of dissolution

odels incorporating the initial transient phase.
cknowledgements
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Appendix A.

Probability density corresponding to cumulative distribution
function (14) of repeated measurements has form

�(x; t, �) =
 

(
(1/�)  ln(1 − x) + t

)
�(1 − x)

+ ı(x)(1 − � (t)), (23)

for x ∈ [0, 1], where ı(x) is a Dirac delta function. The first term
in formula (23) describes probability density of dissolved fractions
related to profiles that started up to the time t only and thus its
integral may  not to be equal to one. The second term, ı(x)(1 −� (t)),
covers the dissolution profiles that start after the time t and thus
their value is zero at given time instant. Mean of random variable
(13) can be calculated from (23). As it holds

∫ ∞
−∞ xı(x)dx = 0 we

obtain

EX�(t) =
∫ 1

0

x

�(1 − x)
 

(
1
�

ln(1 − x) + t
)

dx

=
∫ t

−∞
(1 − exp (�(u − t))) (u)du

= � (t) −
∫ t

−∞
exp (−�(t − u)) (u)du,

where substitution u = ln (1 − x)/� + t is applied in the second step
and � (t) =

∫ t
−∞ (u)du is cumulative distribution function corre-

sponding to density  (t). Similarly we can calculate the second
moment, EX�(t)2, and variability of the dissolved fraction at the
time t in form

VarX�,t = � (t) (1 − � (t)) − 2 exp(−�t)(1 − � (t))L(1, t)

+ exp(−2�t)(L(2, t) − L2(1,  t)), (24)

where

L(q, t) =
∫ t

0

exp(q�u) (u)du. (25)

For example, if random variable T0 has Gaussian distribution with
mean t0 and variability �2

t0
, then

L(q, t) = exp
(

1
2
�2q2�2

t0
+ �qt0

)
˚

(
t − t0
�t0

− q��t0

)
, (26)

and if T0 is exponentially distributed with mean t0, then

L(q, t) =
1 − exp

(
q�t − t/t0

)
1 − q�t0

. (27)

For T0 following Gamma  distribution the function L(q, t) can not be
obtained analytically.
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